2016 Ken Nakayama Medal for Excellence in Vision Science – Horace Barlow

The Vision Sciences Society is honored to present Horace Barlow with the 2016 Ken Nakayama Medal for Excellence in Vision Science.

The Ken Nakayama Medal is in honor of Professor Ken Nakayama’s contributions to the Vision Sciences Society, as well as his innovations and excellence to the domain of vision sciences.

The winner of the Ken Nakayama Medal receives this honor for high-impact work that has made a lasting contribution in vision science in the broadest sense. The nature of this work can be fundamental, clinical or applied. The Medal is not a lifetime career award and is open to all career stages.

The medal will be presented during the VSS Awards session on Monday, May 16, 2016, 12:30 pm in Talk Room 2.

Horace Barlow

Fellow, Trinity College, Cambridge

Perhaps more than any other vision scientist, Horace Barlow has shaped the way we think about how seeing depends on the underlying machinery of vision. His articulation of the single neuron doctrine—that the activity of a single neuron is significant for seeing—and the corollary idea that the visual stimuli to which a neuron is most sensitive tell us about the neuron’s perceptual role, are now taken so much for granted that it is hard to appreciate how primitive were notions of the relationship between visual physiology and perception before him. His unfailing concentration on the act of seeing drove his efforts to use psychophysical and physiological insight to drive experimental measurement, and brought a clarity and incisiveness that was unlike anything that preceded it. The approaches he pioneered provide the foundation for much of contemporary visual neuroscience.

An important conceptual theme that runs through his career is information. In early work, this was evident in his rigorous application of statistical theory to understanding psychophysical and physiological thresholds. Later he applied it to higher-level perceptual decisions such as pattern recognition, symmetry perception, and perception of random dot motion. The interplay of information and efficiency underlies his work in encoding and entropy, and forms the basis of many of his theoretical contributions, notably his work on redundancy reduction and efficient coding. Information theory is now a standard part of the tool set of vision science, but it was Barlow who brought it to vision science and taught us to use it.

His profound influence on the way we think about vision should not overshadow the importance of his particular contributions, including: characterizing the nature of eye movements during fixation; establishing the quantum efficiency of vision both psychophysically and physiologically; learning the spatio-temporal organization of visual adaptation; discovering and deducing the behavioral significance of retinal ganglion cells with highly specific response properties; elucidating directional movement selectivity in retina; analyzing binocular disparity selectivity in cortex; and many more.

Barlow trained in medicine at Harvard and University College Hospital before his graduate studies with E D Adrian in Cambridge. He held faculty positions at Cambridge and at the University of California, Berkeley. He has received many honors, among them elected Fellowship, the Ferrier Lectureship, and the Royal Medal of the Royal Society of London, the Australia Prize, the Tillyer Award of the Optical Society of America, the Karl Spencer Lashley Prize of the American Philosophical Society, and the Swartz Prize of the Society for Neuroscience.

Barlow feels happiest, and proudest, about having worked in a community of scientists who are leaping towards a deeper understanding of the relation between brain and mind.  This goal once seemed utterly unreachable, and was openly mocked until quite recently. And in the end what he feels most grateful for is his own long association with Trinity College, where he learned the importance of arguing fiercely for strongly held beliefs.

2016 Young Investigator – Nicholas Turk-Browne

Nicholas Turk-Browne

Associate Professor, Associate Chair, Department of Psychology, Princeton University

Nicholas Turk-Browne is the 2016 winner of the Elsevier/VSS Young Investigator Award. Trained at the University of Toronto and then at Yale University, Nicholas Turk-Browne was awarded a PhD in Cognitive Psychology in 2009 under the supervision of Marvin Chun and Brian Scholl. Following his PhD, Nick took up a position at Princeton University, where he is currently an associate professor.

In the past 7 years following his PhD, Nick has established an active and dynamic lab that uses multidisciplinary methodologies to advance our understanding of the neural circuits that mediate visual cognition. Nick combines behavior, brain imaging, and computational modeling to bridge across key areas in the field of visual cognition: visual learning, memory and attention. His pioneering work on visual statistical learning has demonstrated that our ability to extract perceptual regularities relies on interactions between the hippocampus and the visual cortex. Nick has shown that this circuit supports predictive representations based on implicitly learned associations. Further, his work shows that — although implicit — statistical learning can be modulated by task demands and, in turn, learned regularities automatically draw attention. Nick’s contributions extend to groundbreaking methodological developments that combine neuroimaging and machine learning to understand the brain dynamics that support visual cognition. Finally, Nick’s recent work using neural fluctuations as feedback during real-time fMRI to train attention has strong potential for translational clinical applications. 

Elsevier/Vision Research Article

Attention and perception in memory systems

Monday, May  16, 12:30 pm, Talk Room 2

The labeling of brain structures by function, such as the “visual” system, “attention” networks, and “memory” systems, reinforces an appealing division of cognitive labor over the brain. At the same time, neural representations can be widely distributed and real-world behaviors require the coordination of much of the brain. An alternative way to think about brain function is in terms of the computations that different brain regions and networks perform and to try to understand when and how these computations participate in different cognitive processes. In this presentation, I will discuss some recent findings from my lab that illustrate this perspective, particularly about the involvement of memory systems in attention and perception. First, I will show that goal-directed attention modulates the state of the hippocampus — the canonical memory system in the brain — and through this, determines what aspects of visual experience we remember. Second, I will show that pattern completion, a core computation of the hippocampus, supports predictive coding in early visual cortex. These and other studies highlight the broad reach of vision science in the mind and brain.

 

2016 Davida Teller Award – Janette Atkinson

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Vision Sciences Society is honored to present Dr. Janette Atkinson with the 2016 Davida Teller Award.

Janette Atkinson

Emeritus Professor of Psychology and Developmental Cognitive Neuroscience, University College London
Visiting Professor, University of Oxford
Visual Development Unit, London and Oxford

Janette Atkinson is a worldwide leader in research on human visual development. She has made major advances in an extraordinarily wide range of basic and clinical areas, collaborating throughout her career, with vision scientists, ophthalmologists, optometrists and pediatric neurologists. Her impact on the field has been immense, both directly through innovative research, and indirectly through her mentorship and personal support to her students and collaborators.

Her career began in Cambridge University where she set up and led one of the first ‘baby labs’, the Visual Development Unit at Cambridge and subsequently at University College London (UCL, University of London) and Oxford. She was the first to use Davida Teller’s method of forced-choice preferential looking to measure contrast sensitivity, initially in the first months of life of her own child (Nature 1974), and subsequently with novel VEP measures in newborns. Using newly devised behavioral and VEP/ERP methods, she demonstrated the onset of binocularity, orientation sensitivity, OKN, and fixation shift control of attention, leading to her pioneering neural model of cortical/subcortical interaction in early human development. Janette originated the use of photorefraction and videorefraction with infants, and led two unique population screening studies showing that spectacle correction of infants’ refractive errors could improve visual outcome, reducing strabismus and amblyopia by 4 years of age. Having used her methods of assessing cortical development with at-risk groups, particularly infants born preterm and children with Williams syndrome, she has moved on to studying global processing, leading to her influential idea of ‘Dorsal Stream Vulnerability’ in many children with genetic developmental disorders, perinatal brain injury and CVI (Cerebral Visual Impairment). She argues for the continuity and associations in dorsal stream development between global motion and attentional, spatial, visuo-cognitive, and visuomotor development, and has devised assessments for this whole area in both typical and atypically developing children.

She has been a mentor and advisor, giving generous support to many students, colleagues and collaborators, both scientists and clinicians, and a role model showing young female scientists that the highest levels can be reached while sustaining close family life with her four children. More widely, she has been a tireless advocate for women’s scientific careers, as a member of ARVO’s Equality and Diversity Committee and through the UK’s Athena SWAN scheme for advancing women’s careers in science. She led UCL’s successful bid for a SWAN Charter Award, one of the first 12 UK universities to achieve this award.

In recognition of her internationally acclaimed research record, she has been elected as a Fellow of the British Academy, the Academy of Medical Sciences and the Academia Europaea.

Visual science as a key to typical and atypical development

Monday, May 16, 2016, 12:30 – 1:30 pm, Talk Room 2

My research on vision development has always been inspired by the prospect of understanding and helping the development of vision in infants and children with clinical problems, including developmental disorders such as autism, Downs syndrome and cerebral palsy.  Initial advances in the basic science of human visual development, since the first measurements of infants’ acuity and contrast sensitivity, have led directly into applications for identifying and assessing  paediatric  ophthalmological and neurodevelopmental  visual disorders.

I will briefly review a few diverse highlights of our own translational work in the Visual Development Unit, and suggest unanswered questions arising from our current knowledge:

  • Indicators of the onset of visual cortical function, based on our model of cortical/subcortical interactions, allowed us to identify  infants with perinatal brain injury (some with very preterm birth) resulting in CVI (Cerebral Visual Impairment ) and  predict subsequent neurocognitive outcome.
  • Measurements of infants’ accommodation and refraction using photorefractive instruments designed in the VDU,   made it possible to carry out population screening programmes of  8000+ typically developing  9- month old infants identifying those  at risk of strabismus and amblyopia.  We demonstrated that early spectacle correction of infants with significant hyperopic refractive errors could reduce the number of children who develop these common disorders.
  • Tests of children’s global form and motion processing in  extra-striate visual  areas identified ‘dorsal stream vulnerability’ as a feature of many diverse neurodevelopmental disorders e.g. Williams syndrome, autism , hemiplegia. Recently we have found that global motion sensitivity is associated with MRI surface area structural measures in parietal lobe in typically developing children. Good motion sensitivity is correlated with good visuo-motor ability and good early mathematical ability.   Poor global motion sensitivity, relative to static form sensitivity, in children with developmental disorders, is associated with spatial, visuo-motor and attention deficits.
  • Child-friendly tests of visual attention (the Early Child Attention Battery devised in the VDU)   enable an individual child’s attention  profile of abilities across different components of attention,   to be measured rapidly  in both typically developing preschool children and in children with genetic developmental disorders  with low mental age.

My research has started to answer questions about both the typical and atypical developing visual brain, but it has raised many more unanswered ones. For example , we still do not know the critical period of plasticity for many of the visual networks which develop in the first few years of life. If we understood the epigenetic factors controlling early visual brain growth and plasticity, then this might lead to success in future treatment of paediatric visual disorders.  My hope is that some of these questions will be answered by future vision researchers (both women and men !) coming into the ‘developmental arena’ from a wide range of different disciplines.

Recipient of the 2013 Davida Teller Award

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Vision Sciences Society is honored to announce Dr. Eileen Kowler as the inaugural recipient of the 2013 Davida Teller Award.

Eileen Kowler

Department of Psychology, Rutgers University

eileen_kowlerDr. Eileen Kowler, Professor at Rutgers University, is the inaugural winner of the VSS Davida Teller Award. Eileen transformed the field of eye movement research that eye movements are not reflexive visuomotor responses, but are driven by and tightly linked to attention, prediction, and cognition.

Perhaps the most significant scientific contribution by Eileen was the demonstration that saccadic eye movements and visual perception share attentional resources. This seminal paper has become the starting point for hundreds of subsequent studies about vision and eye movements. By convincingly demonstrating that the preparation of eye movements shares resources with the allocation of visual attention, this paper also established the validity of using eye movements as a powerful tool for investigating the mechanisms of visual attention and perception, which provides a precision and reliability that is otherwise difficult, if not impossible, to achieve. This work forms the basis of most of the work on eye movements that is presented at VSS every year!

Before her landmark studies on saccades and attention, Eileen made a major contribution by showing that cognitive expectations exert strong influences on smooth pursuit eye movements. At that time smooth pursuit eye movements were thought to be driven in a machine-like fashion by retinal error signals. Eileen’s wonderfully creative experiments (e.g., pursuit targets moving through Y-shaped tubes) convinced the field that smooth pursuit is guided in part by higher-level visual processes related to expectations, memory, and cognition.

Anticipatory behavior of human eye movements

Monday, May 13, 1:00 pm, Royal Palm 4-5

The planning and control of eye movements is one of the most important tasks accomplished by the brain because of the close connection between eye movements and visual function.   Classical approaches assumed that eye movements are solely or primarily reactions to one or another type of sensory cue, but we now know that eye movements also display anticipatory responses to predicted signals or events. This talk will illustrate several examples of anticipatory behavior of both smooth pursuit eye movements and saccades.   These anticipatory responses are automatic and effortless, depend on the decoding of symbolic environmental cues and on memory for recent events, and can be found in typical individuals and in those with autism spectrum disorder.   Anticipatory responses show that oculomotor control is driven by internal models that take into account both the capacity limits of the motor system and the states of the surrounding visual environment.

.

2014 Davida Teller Award – Mary C. Potter

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Vision Sciences Society is honored to present Dr. Mary Potter with the 2014 Davida Teller Award.

Mary C. Potter

Department of Brain and Cognitive Sciences, MIT

Dr. Mary Potter, better known as Molly Potter, a professor of Psychology at the Massachusetts Institute of Technology, is the winner of the Davida Teller Award 2014. Potter is known for her fierce intellect, her deeply original experiments, and her fundamental discoveries about human cognition.

A few highlights: Already in 1975, Potter discovered that subjects can report conceptual information about a pictured object faster than they can name it, showing that it is not necessary to access the verbal label to understand the meaning of an object. Later she discovered that complex visual scenes can be perceived and understood much faster than anyone had previously recognized. She showed that subjects can identify the gist of a scene from an astonishingly brief presentation. Here Potter made innovative use of rapid serial visual presentation (RSVP).

Potter has a long list of scientists that consider her as their mentor, many of them leading scientists themselves now. For example, with Judith Kroll, Molly showed that people can easily read at 12 words per second, but their later memory will be poor. In Molly’s lab, Helene Intraub discovered repetition blindness and Nancy Kanwisher and Daphne Bavelier developed methods to study it. Marvin Chun, and later Mark Niewenstein and Brad Wyble, investigated and modeled the attentional blink.

Detecting picture meaning in extreme conditions

Monday, May 19, 12:30 pm, Talk Room 2

What is the shortest presentation duration at which a named scene or object can be recognized above chance, when the scene is presented among other pictures in a short RSVP sequence? In a recent study (Potter, Wyble, Hagmann, & McCourt, 2014) presentation durations were blocked and dropped slowly from 80 ms to 53, 27, and 13 ms. Although d’ declined as duration shortened, it remained above chance even at 13 ms, whether the name was given just before or just after the sequence, and whether there were 6 or 12 pictures per sequence. A forced choice between two pictures at the end of each sequence was reliably above chance only if the participant had correctly said yes. New replications varied the method but gave similar results: 1) using grayscale sequences; 2) randomizing all the nontarget pictures across all trials, for each subject; 3) randomizing durations instead of blocking them; and 4) using a different set of pictures with superordinate or basic object names for targets. Whether these results indicate feedforward processing (as we suggest) or are accounted for in some other way, they represent a challenge to models of visual attention and perception.

2015 Davida Teller Award – Suzanne McKee

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Vision Sciences Society is honored to present Dr. Suzanne McKee with the 2015 Davida Teller Award.

Suzanne McKee

The Smith-Kettlewell Eye Research Institute

Suzanne began her scientific career at UC Berkeley, and has spent much of her research career at Smith-Kettlewell Eye Research Institute.

Suzanne has been a hugely influential figure in vision science, and is one of a small group of researchers who laid the foundations of modern visual psychophysics. She has worked on many aspects of vision, and is responsible for a remarkably varied array of important scientific contributions in the fields of motion perception, binocular vision, color perception, amblyopia, and visual search. She has made a series of seminal and thought provoking discoveries in these areas that have challenged existing theories. Her early work on spatial vision centered on the visual hyperacuities, where the challenge was to explain how resolution limits for vernier and stereo offsets could dramatically exceed the sampling limits imposed by the retina. Suzanne has made many fundamental contributions to understanding the stereo matching problem as well as insight into the role of binocular vision in amblyopia. Her work is notable for its clear and innovative conception, quality of execution, and care of interpretation.

Suzanne’s impact on the field has been profound, both directly through her work, but also indirectly through her mentorship. Like Davida Teller, she was a trail-blazer at a time when few women worked in vision science, overcoming many of the obstacles common in that era. Along the way, Suzanne inspired generations of both men and women to follow in her footsteps. In the course of her career, Suzanne has worked with a variety of students, post-docs, and colleagues, and those who have worked with her are extraordinarily grateful for her generosity, guidance, wisdom, and encouragement. VSS would like to thank Suzanne for her contributions to vision science.

2009 Young Investigator – Frank Tong

Dr. Frank Tong

Vanderbilt University, Department of Psychology

This year’s winner of the VSS Young Investigator Award is Frank Tong, Associate Professor of Psychology at Vanderbilt University. In the nine years since receiving his PhD from Harvard, Frank has established himself as one of the most creative, productive young vision scientists in our field. His research artfully blends psychophysics and brain imaging to address important questions about the neural bases of awareness and object recognition. He has published highly influential papers that have been instrumental in shaping current thinking about the neural bases of multistable perception, including binocular rivalry. Moreover, Frank has played a central role in the development and refinement of powerful analytic technique for deriving reliable population signals from fMRI data, signals that can predict perceptual states currently being experienced by an individual. Using these pattern classification techniques, Frank and his students have identified brain areas that contain patterns of neural responses sufficient to support orientation perception, motion perception and working memory.

The YIA award will be presented at the Keynote Address on Saturday, May 9, at 7:30 pm.

2007 Young Investigator – Zoe Kourtzi

Zoe Kourtzi, PhD

Professor of Psychology at the University of Birmingham

Dr. Zoe Kourtzi has been chosen as the first recipient of the VSS Young Investigator Award.  The Award Committee recognized her many outstanding fMRI studies that characterized the neural loci of shape processing in the human cortex.  Her development of an important, widely used fMRI technique, “event-related adaptation” was also commended.  Her recent fMRI work on the maturation of visual evoked activity in primates is a promising new direction in her research program and demonstrates the diversity of her interests. This creative productive young scientist represents the best qualities of the VSS community.

The YIA award was presented at the Keynote Address on Sunday, May 13, at 7:00 pm.

 

2008 Young Investigator – David Whitney

Dr. David Whitney

Department of Psychology and Center for Mind & Brain, University of California, Davis

Dr. David Whitney has been chosen as this year�s recipient of the VSS Young Investigator Award in recognition of the extraordinary breadth and quality of his research. Using behavioral and fMRI measures in human subjects, Dr. Whitney has made significant contributions to the study of motion perception, perceived object location, crowding and the visual control of hand movements. His research is representative of the diversity and creativity associated with the best work presented at VSS.

The YIA award will be presented at the Keynote Address on Saturday, May 10, at 7:00 pm.

 

2010 Young Investigator – George Alvarez

George Alvarez

Harvard University

The winner of the 2010 VSS Young Investigator Award is George Alvarez, Assistant Professor of Psychology at Harvard University. Alvarez has made exceptionally influential contributions to a number of research areas in vision and visual cognition. His work has uncovered principles that shape the efficient representation of information about objects and scenes in high level vision. He has also studied the way that high-level visual representations interact with attention and memory, revealing the functional organization and limitations of these processes. His work particularly illuminates the interfaces of vision, memory, and attention, systems that have classically been studied as separate entities. His creative experiments elegantly represent the diversity and vitality of the emerging field of visual cognition.

The Young Investigator Award will be presented before the VSS Keynote Address on Saturday, May 8th, at 7:45 pm, in the Royal Palm Ballroom at the Naples Grande Hotel.

 

Vision Sciences Society