2018 Ken Nakayama Medal for Excellence in Vision Science – George Sperling

The Vision Sciences Society is honored to present George Sperling with the 2018 Ken Nakayama Medal for Excellence in Vision Science.

The Ken Nakayama Medal is in honor of Professor Ken Nakayama’s contributions to the Vision Sciences Society, as well as his innovations and excellence to the domain of vision sciences.

The winner of the Ken Nakayama Medal receives this honor for high-impact work that has made a lasting contribution in vision science in the broadest sense. The nature of this work can be fundamental, clinical or applied. The Medal is not a lifetime career award and is open to all career stages.

George Sperling

Department of Cognitive Sciences, Department of Neurobiology and Behavior, and the Institute of Mathematical Behavioral Sciences, University of California, Irvine

Five encounters with physical and physics-like models in vision science

Dr. Sperling will talk during the Awards session
Monday, May 21, 2018, 12:30 – 1:30 pm, Talk Room 1-2.

Two early concepts in a vision course are photons and visual angles:

1. Every second, a standard candle produces 5.1×1016 photons, enough to produce 6.8×106 photons for every one of the 7.7×109 persons on earth–a very bright flash (68,000*threshold) if delivered to the pupil. Obviously, photons pass seamlessly through each other or we’d be in a dense fog. And, the unimaginably large number of photons solves the ancients’ problem: How can the light from a candle produce a detailed image behind a tiny, ¼ inch pupil that captures only an infinitesimal fraction of the meager candlelight reflected off relatively distant surfaces?

2. The visual angles of the moon (0.525°) and the sun (0.533°) are almost the same although their physical sizes are enormously different. Occlusion demo: A solar eclipse on a reduced scale in which the earth is 1/4 inch diam, the moon is 1/16 inch diam 7.5 inch away, and the sun is a 27 inch beach ball 250 ft away. Note: The beach ball nearest the sun, Alpha Centauri, is 12,200 mi away.

3. A simply dynamical system of a marble rolling under the influence of gravity in a bowl (filled with a viscous fluid) whose shape is distorted by the covariance of the images in the two eyes. The marble’s position can represent the vergence angle of horizontal, vertical, or torsional vergence of the eyes, or of binocular fusion; the bowl’s shape represents the bistable nature of these processes (Sperling, 1970).

4. A simple RC electrical circuit–a capacitor that stores an electrical charge that leaks away through the resistor–illustrates exponential decay. When the resistance is allowed to vary, it represents shunting inhibition in a neuron. A feedforward shunting inhibition circuit models the compression of the 106 range of visual inputs into the approximately 30:1 useful range of neural signals, and also the concurrent changes in visual receptive field structure (Sperling and Sondhi, 1968). A constant noise source after the range compression produces a S/N ratio inversely proportional to the average input intensity, i.e., a Weber Law (Sperling, 1989).

5. A similar feedback shunting-gain-control system efficiently models mechanisms of top-down spatial, temporal, and feature attention. Example: Reeves and Sperling, 1986: A simple 3 -parameter model of the shift of visual attention from one rapid stream to an adjacent stream of characters (an attention reaction-time paradigm) accurately accounts for over 200 data points from variants of this procedure.

Biography

George Sperling attended public school in New York City. He received a B.S. in mathematics from the University of Michigan, an M.A. from Columbia University and a Ph.D. from Harvard, both in Experimental Psychology.

For his doctoral thesis, Sperling introduced the method of partial report to measure the capacity and decay rate of visual sensory memory, which was renamed iconic memory by Ulrich Neisser. To measure the information outflow from iconic memory, Sperling introduced post-stimulus masking to terminate iconic persistence, and confirmed this with an auditory synchronization paradigm: Subjects adjusted an auditory click to be simultaneous with the perceived onset and on other trials with the perceived termination of visible information. The interclick duration defined the duration of visible persistence.

Sperling’s first theoretical venture was a feed-forward gain control model based on shunting inhibition, formalized with a mathematician, Mohan Sondhi. It accounted for the change of visual flicker sensitivity with light intensity and for Barlow’s observation that visual receptive fields change from pure excitation in the dark to antagonistic center-surround in the light. Subsequently, Sperling observed that this same model, with internal noise following the gain control, also accounted for Weber’s Law. For binocular vision, Sperling proposed a dynamic, energy-well model (a pre-catastrophe theory “catastrophe” model) to account for multiple stable states in vergence-accommodation as well as for Julesz’s hysteresis phenomena in binocular fusion. With Jan van Santen, Sperling elaborated Reichardt’s beetle-motion-detection model for human psychophysics, and experimentally confirmed five counter-intuitive model predictions. Shortly afterwards, Charlie Chubb and Sperling defined a large class visual stimuli (which they called “second-order”) that were easily perceived as moving but were invisible to the Reichard model. These could be made visible to the Reichard model by prior contrast rectification (absolute value or square), thereby defining the visual pre-processing of a second motion system. With Zhong-Lin Lu, Sperling found yet another class of stimuli that produced a strong motion perceptions but were invisible to both Reichard (first-order) and second-order motion detecting systems. They proposed these stimuli were processed by a third-order motion system that operated on a salience map and, unlike the first- and second-order systems, was highly influenced by attention. To characterize these three motion-detection systems, they developed pure stimuli that exclusively stimulated each of the three motion system. More recently, Jian Ding and Sperling used interocular out-of-phase sinewave grating stimuli to precisely measure the contribution of each eye to a fused binocular percept. This method has been widely adopted to assess treatments of binocular disorders.

Twenty five years after his thesis work, Sperling returned to attention research with a graduate student, Adam Reeves, to study attention reaction times of unobservable shifts of visual attention which they measured with the same precision as concurrent finger-press motor reaction times. Their basic experiment was then greatly elaborated to produce hundreds different data points. A simple (3-parameter) attention gating model that involved briefly opening an attention gate to short-term memory accurately accounted for the hundreds of results. Subsequently, Erich Weichselgartner and Sperling showed that the shifts of visual attention in a Posner-type attention-cued reaction time experiment could be fully explained by independent spatial and temporal attention gates. In a study of dual visual attention tasks, Melvin Melchner and Sperling demonstrated the first Attention Operating Characteristics (AOCs). Sperling and Barbara Dosher showed how AOCs, the ROCs of Signal Detection Theory, and macro-economic theory all used the same underlying utility model. Shui-I Shih and Sperling revisited the partial-report paradigm to show that when attention shifted from one row of letters to another, attention moved concurrently to all locations. Together, these attention experiments showed that visual spatial attention functions like the transfer of power from one fixed spotlight to another, rather than like a moving spotlight. Most recently, Sperling, Peng Sun, Charlie Chubb, and Ted Wright, developed efficient methods for measuring the perceptual attention filters that define feature attention.

Sperling owes what success he has had to his many wonderful mentors and collaborators. Not fully satisfied with these fifty-plus years of research, Sperling still hopes to do better in the future.

 

2018 Davida Teller Award – Nancy Kanwisher

Vision Sciences Society is honored to present Dr. Nancy Kanwisher with the 2018 Davida Teller Award

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Nancy Kanwisher

Walter A. Rosenblith Professor, Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology

Functional imaging of the brain as a window into the architecture of the human mind

Dr. Kanwisher will talk during the Awards Session
Monday, May 21, 2018, 12:30 – 1:30 pm, Talk Room 1-2

The last twenty years of fMRI research have given us a new sketch of the human mind, in the form of the dozens of cortical regions that have now been identified, many with remarkably specific functions. I will describe several ongoing lines of work in my lab on cortical regions engaged in perceiving social interactions, understanding the physical world, and perceiving music. After presenting various findings that use pattern analysis (MVPA), I will also raise caveats about this method, which can both fail to reveal information that we know is present in a given region, and which can also reveal information that is likely epiphenomenal. I’ll argue that  human cognitive neuroscience would greatly benefit from the invention of new tools to address these challenges.

Biography

My research uses fMRI and other methods to try to discover the functional organization of the brain as a window into the architecture of the human mind. My early forays in this work focused on high-level visual cortex, where my students and I developed the methods to test the functional profile of regions in the ventral visual pathway specialized for the perception of face, places, bodies, and words. The selectivity of these regions is now widely replicated, and ongoing work  in my lab and many other labs is now asking what exactly is represented and computed in each of these regions, how they arise both developmentally and evolutionarily, how they are structurally connected to each other and the rest of the brain, what the causal role of each is in behavior and perceptual awareness, and why, from a computational point of view, we have functional selectivity in the brain in the first place.

My career would quite simply never have happened without the great gift of fabulous mentors. Molly Potter fought to have me accepted to graduate school (from the bottom of the waiting list), and, against all reason, did not give up on me even when I dropped out of grad school three times to try to become a journalist.  Then after a diversionary postdoc in international security,  Anne Treisman gave me an incredible second chance in vision research as a postdoc in her lab, despite my scanty list of publications. Later in my own lab, my luck came in the form of spectacular mentees. I have had the enormous privilege and delight of working with many of the most brilliant young scientists in my field.

I think we scientists have an obligation to share the cool results of our work with the public (who pays for it). My latest effort in this direction is my growing collection of short lectures about human cognitive neuroscience for lay and undergraduate audiences: nancysbraintalks.mit.edu.

2025 YIA Committee

Members are appointed by the Board to a two-year term.

Serge Dumoulin, Chair
George Alvarez
Patrizia Fattori
Mike Landy
Nick Turk-Browne

2025 Ken Nakayama Committee

The committee consists of 4 most recent past presidents who are no longer on the Board of the Vision Sciences Society. The current VSS President sits on the committee to oversee the selection process, but does not have voting rights.

Jeffrey Schall, Chair
David Brainard
Laurie Wilcox
Jody Culham
Krystel Huxlin, President



2025 Davida Teller Committee

Members are appointed by the Board to a three-year term.

Anya Hurlbert, Chair
Marlene Behrmann
Miguel Eckstein
Yoko Mizokami
Anna Montagnini


2017 Ken Nakayama Medal for Excellence in Vision Science – Jan J. Koenderink

The Vision Sciences Society is honored to present Jan J. Koenderink with the 2017 Ken Nakayama Medal for Excellence in Vision Science.

The Ken Nakayama Medal is in honor of Professor Ken Nakayama’s contributions to the Vision Sciences Society, as well as his innovations and excellence to the domain of vision sciences.

The winner of the Ken Nakayama Medal receives this honor for high-impact work that has made a lasting contribution in vision science in the broadest sense. The nature of this work can be fundamental, clinical or applied. The Medal is not a lifetime career award and is open to all career stages.

The medal will be presented during the VSS Awards session on Monday, May 22, 2017, 12:30 pm in Talk Room 2.

Jan J. Koenderink

Laboratory of Experimental Psychology, University of Leuven (KU Leuven), Belgium, Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands and Abteilung Allgemeine Psychologie, Justus-Liebig Universität, Giessen, Germany

Only a few scientists can be proud of a real breakthrough in vision science, very few can claim significant advances in multiple aspects of our visual experience, and almost none is an acclaimed researcher in two distinct disciplines. Jan Koenderink is this unique vision scientist. In both human and machine vision, Jan Koenderink has contributed countless breakthroughs towards our understanding of the properties of receptive field profiles, of the different types of optic flow, of the surface characteristics of three-dimensional shape, and more recently of the space of color vision.

Together with his lifelong collaborator Andrea van Doorn, Jan Koenderink has approached each new problem in a humble, meticulous, and elegant way. While some papers may scare the less mathematical inclined reader, a bit of perseverance inevitably leads to the excitement of sharing with him a true insight. These insights have profoundly influenced our understanding of the functioning of the visual system. Some examples include: the structure of images seen through the lens of incremental blurring that led to the now ubiquitous wavelet representation of images, the minimal number of points and views to reconstruct a unique class of three-dimensional structures known as affine representations, the formal description of Alberti’s inventory of shapes from basic differential geometry principles, the careful description of the interplay between illumination and surface reflectance and texture, and many more. The approach of Jan Koenderink to systematically work in parallel on theoretical derivations and on psychophysical experimentations reminds us that behavioral results are uninterpretable without a theoretical framework, and that theoretical advances remain detached from reality without behavioral evidence.

Jan Koenderink trained in astronomy with Maarten Minnaert at the University of Utrecht in the Netherlands, and then in physics and mathematics. He earned his PhD in artificial intelligence and visual psychophysics with Maarten Bouman from Utrecht. He held faculty positions in Utrecht and Groningen in the Netherlands, and guest professorships from Delft University of Technology, MIT in the USA, Oxford in the UK, and KU Leuven in Belgium. Most significantly, he headed the “Physics of Man” department at the University of Utrecht for more than 30 years. Jan Koenderink has authored more than 700 original research articles and published 2 books of more than 700 pages each. He received many honors, among them a Doctor Honoris Causa in Medicine from KU Leuven, the Azriel Rosenfeld lifelong achievement award in Computer Vision, the Wolfgang Metzger award, the Alexander von Humboldt prize, and is a fellow of the Royal Netherlands Academy of Arts and Sciences.

.

Save

Save

2017 Young Investigator – Janneke F.M. Jehee

Vision Sciences Society is honored to present Janneke F.M. Jehee with the 2017 Young Investigator Award

Janneke F.M. Jehee

Principal Investigator at the Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands

Uncertainty and optimization in human vision

Dr. Jehee will talk during the Awards Session
Monday, May 22, 2017, 12:30 – 1:30 pm, Talk Room 2

We tend to trust our eyes, believing them to be reliable purveyors of information about our visual environment. In truth, however, the signals they produce from moment to moment are noisy and incomplete. How do we ‘decide’ what we see based on such limited and uncertain information? In this talk, I will present theoretical as well as experimental work to address this question. I will first discuss a computational model of predictive neural coding. The model suggests that the visual system may use top-down interactions between areas to reduce the degree of uncertainty in its perceptual representations. I will then present experimental findings on top-down attention and perceptual learning, and show that these processes reduce the uncertainty in the representation of stimulus features in visual cortex. Finally, I will present recent neuroimaging results indicating that the degree of uncertainty in cortical representations can be characterized on a trial-by-trial basis. This work shows that the fidelity of visual representations can be directly linked to the observer’s perceptual decisions.

Biography

Janneke F.M. Jehee is a tenured Principal Investigator at the Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, where she directs the Visual Computation & Neuroimaging group. She received her Ph.D. in Psychology from the University of Amsterdam under the direction of Victor Lamme. She then moved on to postdoctoral work, first in computational neuroscience at the University of Rochester with Dana Ballard, and then in fMRI research at Vanderbilt University with Frank Tong. Dr. Jehee’s work has been supported by numerous grants and fellowships, including from the Netherlands Organization for Scientific Research and the European Research Council.

Dr. Jehee works on the fundamental problem of understanding how the brain represents the visual properties of the environment. Her contributions have used multiple approaches, including computational modeling, psychophysical experimentation and fMRI, to study the interaction between the bottom-up encoding of stimulus features and top-down influences, such as predictability, attention, and learning. She has developed a series of innovative and rigorous computational models of neural coding, and tested those models against data from single neurons and fMRI, as well as psychophysical observations. In her early work, which was focused on predictive neural coding, she developed models showing that predictive feedback could account for aspects of the tuning properties of cortical neurons, as well as the temporal response properties of neurons in the lateral geniculate nucleus. She also contributed to the development of a neural model of temporal coding based on timed circuits in the gamma frequency range.

In her fMRI research, Dr. Jehee has conducted important studies that have shed light on the neural mechanisms of spatial and feature-based attention, and the impact of perceptual learning on early visual cortical representations. In collaboration with her students and colleagues at the Donders Institute, she tackled an important conundrum regarding predictive neural coding, namely, why neural signals for predictable stimuli are typically suppressed relative to those for novel stimuli, while neural signals for attended stimuli are often enhanced. Jehee showed that while the strength of signals representing highly predictable stimuli may be suppressed, the precision of the neural representation of these stimuli is improved.

In more recent, ground-breaking work, Jehee and her lab developed a new technique that can estimate the neural uncertainty of visuocortical representations of stimuli on a moment-to-moment basis, directly linking neural uncertainty to perceptual decisions of the observer.

In addition to these stellar research accomplishments, Dr. Jehee has participated in the training of many graduate students and postdoctoral fellows, who attest to her creativity, courage and unwavering dedication and devotion to both the work and to the students she is training.

Save

Save

Save

Save

2017 Davida Teller Award – Mary Hayhoe

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Vision Sciences Society is honored to present Dr. Mary Hayhoe with the 2017 Davida Teller Award

Mary Hayhoe

Professor of Psychology, Center for Perceptual Systems, University of Texas Austin

Vision in the context of natural behavior

Dr. Hayhoe will talk during the Awards Session
Monday, May 22, 2017, 12:30 – 1:30 pm, Talk Room 2

Investigation of vision in the context of ongoing behavior has contributed a number of insights by highlighting the importance of behavioral goals, and focusing attention on how vision and action play out in time. In this context, humans make continuous sequences of sensory-motor decisions to satisfy current goals, and the role of vision is to provide the relevant information for making good decisions in order to achieve those goals. I will review the factors that control gaze in natural behavior, including evidence for the role of the task, which defines the immediate goals, the rewards and costs associated with those goals, uncertainty about the state of the world, and prior knowledge.

Biography

Mary Hayhoe is an outstanding scientist who has made a number of highly innovative and important contributions to our understanding of visual sensation, perception and cognition. She received her PhD in 1980 from UC San Diego and served on the faculty at the University of Rochester (1984 – 2005) and University of Texas at Austin (2006 – present). Her scientific career began with a long series of fundamental and elegant studies on visual sensitivity, adaptation and color vision. During this period, Mary was a well‐funded and internationally‐recognized leader in these areas of research; indeed, her work in these areas is still having an important influence.

She then made a dramatic shift in fields, leaving retinal and color psychophysics entirely. With this change, Mary Hayhoe and her colleagues became pioneers in developing a new research area that examines behavior in semi-naturalistic situations. Her research is not about the perceptual or motor system in isolation, but how these systems work together to generate behavior. At the time (the early 1990’s), there had been very few attempts to understand visual and cognitive processing in natural visual tasks. Mary and her colleagues were really the first to develop research methods for rigorously studying visual memory, attention and eye movements in natural everyday tasks (making a sandwich, copying block patterns, walking in cluttered environments etc.). Prior to this work most scientists believed that little of fundamental or general importance could come from working with such complex tasks, because so many neural and motor mechanisms are involved, and because of the difficulty of exerting sufficient experimental control. However, Mary recognized and beautifully exploited the potential of eye, head and body tracking technology, and of virtual‐reality technology, for rigorously addressing the problem of understanding perceptual and cognitive processing in natural tasks.

Mary Hayhoe is one of the founders and acknowledged leaders of a new field where there is much deserved emphasis on behavior in the real world. Her care and imagination are always evident, providing an admirable standard for young men and women alike. Her former graduate students and post‐doctoral researchers readily acknowledge that her mentoring, investment in their futures, and friendship played an important role in their development as scientists and critical thinkers.

Save

Save

Save

Save

Save

FoVea Travel and Networking Award

The FoVea 2017 Award Recipients can be found here

Females of Vision et al. (FoVea) is excited to announce its inaugural round of the FoVea Travel and Networking Award, funded by National Science Foundation. Submissions are due on February 20, 2017.

The FoVea Travel and Networking Award is open to female members of the Vision Science Society (VSS) in pre-doctoral, post-doctoral, and pre-tenure faculty or research scientist positions. Up to 5 female vision scientists will be awarded $1,600 to cover costs involved in attending the 2017 VSS meeting, including membership fees, conference registration fees, and travel expenses.

FoVea created this award as part of its mission to advance the visibility, impact, and success of women in vision science. A recent report from Cooper and Radonjić (2016) indicated that in 2015, the ratio of women to men in VSS was near equal at the pre-doctoral level (1:1.13), but decreased as career stage increased. The decline is symptomatic of forces that impede the professional development of female vision scientists. A key aspect of professional development is building a professional network to support scientific pursuits and to provide mentorship at critical junctions in one’s academic career. The FoVea Travel and Networking Award will help female vision scientists build their professional network by encouraging them to meet with at least one Networking Target at the VSS meeting to discuss their research and consider potential for collaboration. The Networking Target(s) can be of any gender.

The goals of the FoVea Travel and Networking award are to:

  1. Increase the visibility of women by giving them the opportunity to meet and have a one-on-one discussion with a senior scientist(s) at the meeting.
  2. Increase the productivity of women by potentially stimulating collaborative research with the Networking Target(s).
  3. Increase the networking skills of women, both those who apply for, and win the awards, and those who peruse the written reports of awardees on the FoVea website.
  4. Allow excellent female vision scientists who might not otherwise be able to attend the conference to afford it.
  5. Give awards that can be listed on female vision scientists’ CVs thereby enhancing their professional profile.

Application Instructions

Applicants are asked to email the following materials to Karen Schloss at by February 20, 2017. All application related emails should include “FoVea Award 2017” and the applicant’s name it the subject line. The CV, proposal, and letter of agreement from the Networking Target must be combined into a single PDF. The letter of recommendation should be sent in a separate email.

Application materials

  1. CV
  2. A proposal describing the applicant’s plan to network with at least one senior scientist during the VSS 2017 meeting (750 word limit). The plan should include an explanation for why the applicant chose this(these) particular Networking Target(s), a plan for what topics she will discuss with her Networking Target(s) during the meeting, and a statement of how she hopes forging a relationship with the Networking Target(s) will help advance her research/career agenda.
  3. A letter of agreement from the senior scientist(s) named as the Networking Target(s). Networking Targets can be of any gender.
  4. A letter of recommendation from the applicant’s advisor, research supervisor, or department head. Please include the applicant’s name in the subject line of the submission email.

Awardees will agree to write a report on their networking methods and outcomes after the conference by July 1st, 2017. FoVea will post these reports on its website within 9 months of the conference.

Eligibility

Applicants must be a female vison scientist who is a graduate student, postdoctoral fellow, research scientist (non-tenure track), or junior faculty member (pre-tenure).

Review Process

Applications will be reviewed by a committee consisting of three members of the VSS community with Karen Schloss as Chair. Awards will be announced in mid March.

FoVea Committee: Diane Beck, Mary Peterson, Karen Schloss, and Allison Sekuler

2013 Davida Teller Award – Eileen Kowler

VSS established the Davida Teller Award in 2013. Davida was an exceptional scientist, mentor and colleague, who for many years led the field of visual development. The award is therefore given to an outstanding woman vision scientist with a strong history of mentoring.

Vision Sciences Society is honored to present Dr. Eileen Kowler with the inaugural Davida Teller Award.

Eileen Kowler

Department of Psychology, Rutgers University

Dr. Eileen Kowler, Professor at Rutgers University, is the inaugural winner of the Davida Teller Award. Eileen transformed the field of eye movement research that eye movements are not reflexive visuomotor responses, but are driven by and tightly linked to attention, prediction, and cognition.

Perhaps the most significant scientific contribution by Eileen was the demonstration that saccadic eye movements and visual perception share attentional resources. This seminal paper has become the starting point for hundreds of subsequent studies about vision and eye movements. By convincingly demonstrating that the preparation of eye movements shares resources with the allocation of visual attention, this paper also established the validity of using eye movements as a powerful tool for investigating the mechanisms of visual attention and perception, which provides a precision and reliability that is otherwise difficult, if not impossible, to achieve. This work forms the basis of most of the work on eye movements that is presented at VSS every year!

Before her landmark studies on saccades and attention, Eileen made a major contribution by showing that cognitive expectations exert strong influences on smooth pursuit eye movements. At that time smooth pursuit eye movements were thought to be driven in a machine-like fashion by retinal error signals. Eileen’s wonderfully creative experiments (e.g., pursuit targets moving through Y-shaped tubes) convinced the field that smooth pursuit is guided in part by higher-level visual processes related to expectations, memory, and cognition.

Anticipatory behavior of human eye movements

Monday, May 13, 2013, 1:00 pm, Royal Palm Ballroom

The planning and control of eye movements is one of the most important tasks accomplished by the brain because of the close connection between eye movements and visual function.    Classical approaches assumed that eye movements are solely or primarily reactions to one or another type of sensory cue, but we now know that eye movements also display anticipatory responses to predicted signals or events.  This talk will illustrate several examples of anticipatory behavior of both smooth pursuit eye movements and saccades.   These anticipatory responses are automatic and effortless, depend on the decoding of symbolic environmental cues and on memory for recent events, and can be found in typical individuals and in those with autism spectrum disorder.   Anticipatory responses show that oculomotor control is driven by internal models that take into account both the capacity limits of the motor system and the states of the surrounding visual environment.

Vision Sciences Society